- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aljoda, Ali (2)
-
Dhakal, Nirajan (2)
-
Tharu, Bhikhari (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global warming is likely to provoke extreme storms in the eastern United States (eUS), ultimately affecting the probabilistic distribution of the dates of daily maximum precipitation. In this study, probabilistic properties of timing of annual maximum precipitation (AMP) were studied using circular statistics at 583 sites in the eUS (1950–2019). A kernel circular density method was applied to examine distributional modes of timing of AMP. The results of circular median show that seasonality is pronounced across the eUS with many locations having their median date of occurrence in summer, and AMP seasonality is strong in the East North Central region. Similarly, results of circular density method applied to the distribution of AMP timing shows that around 90% of the sites have two or three modes of AMP seasonality in the eUS. Comparison of seasonality between two historical records of equal length (1950–1984 and 1985–2019) shows great spatial variability across the eUS. Temporal changes in seasonal modes for AMP dates revealed four different cases of seasonality changes: (i) weakening of seasonality, (ii) strengthening of seasonality, (iii) strong seasonality for both the old and recent periods, (iv) or uniform or no preferred seasonality for both periods. While a spatial coherence of seasonality changes was not observed, majority of sites showed strong seasonality (case iii) for old and recent periods mainly during summer and fall seasons.more » « less
-
Dhakal, Nirajan; Tharu, Bhikhari; Aljoda, Ali (, International Journal of Climatology)Abstract Temporal changes in the seasonality of extreme precipitation, and possible teleconnections between the seasonality of extreme precipitation and large‐scale climate patterns are not well understood. In this study, we investigated temporal changes in seasonality of annual daily maximum (ADM) and monthly maximum (MM) precipitation indices over the period 1951–2014 for 1,108 stations across the contiguous USA. We also examined seasonality of extreme precipitation during negative and positive phases of three major oscillations: the El Niño–Southern Oscillation, the Northern Atlantic Oscillation, and the Pacific Decadal Oscillation. Our results show that many climate regions within the contiguous USA display distinct seasonality for both ADM and MM. Comparison of seasonality between two historical records of equal length, that is, before and after 1981, shows great spatial variability across the contiguous USA. While a spatial coherence of change in the mean date of occurrence of extreme precipitation across a large area is not visible, a cluster of stations showing decrease in strength of seasonality for the recent period is concentrated in the eastern Gulf Coast and coastal sites of Northeast and Northwest regions. Extreme precipitation seasonality during negative and positive phases of three climate indices revealed that large‐scale climate variabilities have a strong influence on the mean date of occurrence of extreme precipitation but generally weak influence on the strength of seasonality in the contiguous USA. Results from our study might be helpful for sustainable water resource management, flood risk mitigation, and prediction of future precipitation seasonality.more » « less
An official website of the United States government
